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Abstract

Generating realistic human motion from given action descriptions has experienced
significant advancements because of the emerging requirement of digital humans.
While recent works have achieved impressive results in generating motion directly
from textual action descriptions, they often support only a single modality of the
control signal, which limits their application in the real digital human industry.
This paper presents a Motion General-Purpose generaTor (MotionGPT) that can
use multimodal control signals, e.g., text and single-frame poses, for generating
consecutive human motions by treating multimodal signals as special input tokens
in large language models (LLMs). Specifically, we first quantize multimodal control
signals into discrete codes and then formulate them in a unified prompt instruction
to ask the LLMs to generate the motion answer. Our MotionGPT demonstrates a
unified human motion generation model with multimodal control signals by tuning
a mere 0.4% of LLM parameters. To the best of our knowledge, MotionGPT is the
first method to generate human motion by multimodal control signals, which we
hope can shed light on this new direction. Codes shall be released upon acceptance.
Visit our webpage at https://qiqiapink.github.io/MotionGPT/.

1 Introduction

Human motion is pivotal in various applications such as video gaming, filmmaking, and virtual reality.
Recent advancements in AI [41; 48; 38; 40; 39; 30; 25] have paved the way for novel approaches to
motion creation, enabling various control conditions including textual descriptions, music pieces, and
human poses. However, one significant shortcoming of existing works [32; 50; 43; 31; 52] is that they
only target a single type of control condition, greatly limiting their applications in the real world, e.g.,
unable to generate motion sequences conditioned on text descriptions and several keyframe human
poses. To facilitate such applications, it is important to develop a unified human motion generation
framework that can efficiently utilize multiple control signals simultaneously.

This paper proposes a novel and more unified framework for text-motion generation. The frame-
work facilitates the generation of human motions using multiple control conditions, formulated as
output_motion = f(text, task, input_motion). Newly added inputs task and input_motion
represent the task and given motion prompts, respectively. Here, task indicates the specific task the
model should adapt to, while input_motion provides the keyframe poses corresponding to the given
task. This framework is a departure from traditional text-motion generation models as the introduction
of input_motion enables more precise control. For example, given an input_motion and set the
task as "generate motion given init poses", the model should compensate for the subsequent frames
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Figure 1: This work proposes a novel human motion generation method via fine-tuned LLMs, named
MotionGPT. Compared with previous methods, MotionGPT has the unique ability to accept multiple
control conditions and solve various motion generation tasks using a unified model.

of the given frames. Such a framework offers a more practical and comprehensive solution for human
motion generation, where task instructions and multimodal conditions can flexibly control motion
generation.

The challenge of building a model to complete such (text, motion)-motion generation task lies in
understanding multimodal control conditions and generating human motions with varying motion
lengths and richer patterns. We argue that these challenges can be naturally resolved by adapting from
LLMs for the following reasons. First, recent studies have demonstrated that LLMs can understand
multimodal inputs, e.g., images [51; 6; 18; 22; 47] and videos [19], through a lightweight adapter [13].
Therefore, we expect the LLMs can also understand motion sequences with an appropriate adapter.
Second, LLMs can provide diverse human motion contexts for motion generation because they
have encoded diverse motion patterns from extensive large-scale text data (evidence shown in
Supplementary Materials). This enables our motion generator fine-tuned from LLMs can produce
motions with rich patterns. Third, since LLMs output tokens aggressively, producing human motion
with flexible sequences is no longer an obstacle.

To this end, we propose a Motion General-Purpose generaTor (MotionGPT) by fine-tuning an LLM
following designed instructions. Specifically, MotionGPT first maps human poses into discrete
motion codes via the pre-trained motion VQ-VAE and then generates instructions by combining
codes from language prompts and motion prompts. The LLMs are fine-tuned by answering the
correct human pose sequences to the instructions in an efficient way of well-known LoRA adaptation.
The designed motion instruct tuning framework can incorporate pose sequence information into the
fine-tuned large language model while taking advantage of strong motion priors in the original large
language model.

We conduct extensive experiments on the HumanML3D [7] and KIT-ML [33] datasets, demonstrating
MotionGPT has a strong ability for motion generation with multiple control conditions. Remarkably,
MotionGPT achieves this with a significantly small set of training parameters (33 M), and in less
training time (about 4 hours, or just 10% of the time taken by other methods). We observe that joint
training under multiple control instructions outperforms training with a single type of control signal,
showing the effectiveness of our unified motion generation training paradigm. Our contributions can
be summarized as follows:

• We introduce a novel model, MotionGPT, for generating human motions, which allows for multiple
types of control during the generation process. To the best of our knowledge, MotionGPT is the first
method for using both text and poses as conditions. It supports generating subsequent, preceding,
or ‘in-betweening’ motions using a single and unified model.

• We demonstrate that a pre-trained LLM can be readily tuned to function as a human motion
generator , suggesting the potential for directly utilizing LLMs for human motion generation.
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• We present a comprehensive set of experiments, showcasing the effectiveness of our proposed Mo-
tionGPT with multiple types of control signals. Experimental results also indicate that using a more
powerful LLM results in superior motion generation quality, indicating that further advancements
in LLM technology could substantially enhance the performance of MotionGPT in the future.

2 Related Work

Large language models Recently, large language models [5; 35; 36; 4; 29; 44] have been developed
dramatically, e.g., BERT [5], GPT [35], and Google T5 [37]. These models, such as GPT-4 [29],
demonstrate exceptional performance on various linguistic tasks, thanks to the extensive training
data (45 gigabytes in the case of GPT-4) and a large number of parameters they leverage. Previously,
language models were task-specific, focusing on areas such as translation and sentiment analysis.
However, recent developments, like ChatGPT [2], have expanded the capability of these models.
Based on GPT-4, ChatGPT can interact with humans, showcasing its strong natural language un-
derstanding abilities. This effectiveness has opened up possibilities for a myriad of downstream
tasks achieved through fine-tuning these LLMs. However, fine-tuning such models, considering their
extensive parameters, is a challenging task. To address this issue, efficient fine-tuning strategies have
been proposed, including prompt tuning [17; 23; 14], adapters [12; 11; 16], and LoRA [13]. Our
work draws inspiration from the recent progress in LLMs, but it also addresses a distinct problem by
introducing a new modality into the LLMs.

Human motion generation Motion generation [42; 10; 31; 21; 50; 9; 43; 32; 20] is a long-history
task that can be conditioned on various conditions, such as motion description, actions, and music. For
instance, HP-GAN [3] and [28] utilize a sequence-to-sequence model to anticipate future poses based
on prior poses. ACTOR [31] employs a transformer VAE for both unconditional and action-based
generation. TRAJEVAE [15], when supplied with an initial pose and a trajectory, can generate a
motion sequence that follows the given path. In recent years, text-conditional motion generation has
garnered significant attention. This approach focuses on generating human motion sequences that
are conditioned on textual descriptions. TEMOS [32] proposes a VAE model that learns a shared
latent space for both motion and text. MotionDiffuse [50] integrates a diffusion model into the
text-to-motion generation framework and accomplishes impressive results. MDM [43], aiming to
enhance motion-text consistency, uses CLIP [34] as the text encoder to incorporate more robust text
priors into the model. In comparison to previous methods, our work, MotionGPT, stands out as the
first unified motion generation model that supports multimodal controls.

3 MotionGPT: a Motion General-Purpose Generator

MotionGPT proposes a Motion General-Purpose generaTor controlled by multimodal conditions,
i.e., texts and human poses in keyframes. Our motivation is to formulate human motion as a problem
of asking the Large Language Model to generate desirable human motions according to task prompts
and control conditions. Specifically, we quantize motion controls into discrete codes using the
widely-used VQ-VAE [45] (Sec. 3.1). Motion discrete codes, text control conditions, and designed
task instructions are then organized into a unified question template for the LoRA-finetuned LLM
(Sec. 3.2) to generate a human motion sequence answer (Sec. 3.3). Following the typical framework of
instruction tuning, we leverage cross-entropy loss to supervise the LoRA adapter. More importantly,
our MotionGPT can address not only existing human motion generation tasks, e.g., text-to-motion
generation, but also new motion generation tasks by simply adjusting task instructions, showing the
potential of MotionGPT as a generic baseline framework for motion generation (Sec. 3.4).

3.1 Motion Code Generation

VQ-VAE proposed in [45] enables the model to learn discrete representations for generative models.
Given a human pose m, the motion VQ-VAE can be trained by the reconstruction loss, the embedding
loss and the commitment loss, i.e.,

LVQVAE = ||D(E(m))−m||2 + ∥sg[E(m)]− e∥22 + β∥E(m)− sg[e]∥22, (1)

where E , D are the motion encoder and the motion decoder, respectively. Here, the estimated
embedding e after qunatization can be found by searching the nearest embedding in a learnable
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Figure 2: The pipeline of MotionGPT, a Motion General-Purpose generaTor. Given text and poses
as an input example, we organize task descriptions (Instruction) and multiple control conditions
(Input) within a question template. MotionGPT fine-tunes an LLM to generate the corresponding
motion answer, which can then be decoded into human motions using a VQ-VAE decoder.

codebook B = {b1, b2, ..., bN}, where N is the size of the codebook, which can be mathematically
formulated as

e = argmin
bk∈B

∥E(m)− bk∥2. (2)

Based on the estimation latent representation e of the motion m, the reconstructed human pose m̂ can
be produced by the decoder of VQVAE and the motion code p of human pose m can be calculated as
the index of its nearest embedding in the codebook, i.e.,

m̂ = D(e), p = argmin
k

∥E(m)− bk∥2. (3)

3.2 Instruction Generation

In MotionGPT, we design instructions that combine task prompts and control conditions to enable
(text, motion)-motion generation task. Specifically, given the task prompts T = {t1, t2, ..., tnt

}, text
control conditions X = {x1, x2, ..., xnx

} and pose control conditions P = {p1, p2, ..., pnp
} where

nt, nx and np is the number of discrete codes in T , X and P , the instruction I is formulated as

% General control condition format
Control Conditions: Text control condition X <x1, x2, ..., xnx

> Pose control conditions P
<p1, p2, ..., pnp

>
% General instruction format
Instruction I: {Task Prompts T <t1, t2, ..., tnt

>} {Control Conditions}

Here, the pose control conditions P = {p1, p2, ..., pnp
} presents pose codes, generated by using

the same motion VQ-VAE as discussed in Sec. 3.1. Consequently, the entire instruction I can be
regarded as a sequence of specialized text inputs. By generating different motion instructions, our
MotionGPT can address existing human motion generation tasks and new human motion generations,
which is detailed in Sec. 3.4.

3.3 Fine-tuning LLM by Motion Instructions

Instruction tuning [46] enables the LLM to handle various generation tasks by asking LLMs questions
in different instructions. Therefore, we design various instructions that combine both task descriptions
and control conditions to fine-tune large language model by the widely-used and efficient Low-Rank
Adaptation (LoRA) [13]. Specifically, given a large language model F , the general template of our
instructions I and the answer of LLM P̂ = F(I) are formulated as

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.
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% Task Prompts: Code sequences of Task Prompts
% Control Conditions: Code sequences of Control Conditions
Instruction I: {Task Prompts T } {Control Conditions}
Answer P̂: {Sequences of Human Motions }

The answer of LLM P̂ = {p̂1, p̂2, ..., p̂np̂
} is a series of generated motion codes, which can be

decoded to human motion using Eq. 3.

Similar to most language models, we employ cross-entropy loss which constrains the similarity
between estimated and ground-truth tokens, to finetune LLMs by LoRA, which can be presented as

Llora = CE(P̂, P̂gt), (4)

where P̂gt is motion codes of ground-truth motions calculated by Eq. 3 and P̂ is the motion codes of
predicted motion codes by the LLM F .

3.4 Generalization to Existing and New Tasks

Leveraging the general template given in Sec. 3.2 and Sec. 3.3, our MotionGPT is capable of being
a general-purpose motion generator, supporting various generation tasks. Specifically, for existing
text-to-motion generation setting, MotionGPT address it by constructing following instruction I:

Instruction (I) : {Task Prompts: "Generate a sequence of motion tokens matching the following
human motion description."} {Control Conditions: Text control condition X }

By adjusting instructions, MotionGPT can be easily adapted to multiple control conditions, e.g. text
and an arbitrary number of human poses:

Instruction (I) : {Task Prompts: "Generate a sequence of motion tokens matching the following
human motion description given the init/last/key pose tokens."} {Control Conditions: Text
control condition X <Motion Token> Pose control conditions P </Motion Token> }

4 Experiment

4.1 Datasets and Evaluation Metrics

HumanML3D HumanML3D [7] is currently the largest 3D human motion-language dataset, paired
with well-annotated sequence-level textual descriptions. It contains 14,616 motion clips and 44,970
descriptions, composed from a vocabulary of 5,371 unique words. The motion sequences, sourced
from the AMASS [26] and HumanAct12 [9] datasets, encompass a wide spectrum of human actions,
including daily activities, sports, acrobatics, and artistic performances. Each motion clip is accompa-
nied by 3-4 descriptive texts and has been downsampled to 20 fps, with a duration ranging from 2 to
10 seconds. The dataset is partitioned into training, validation, and test sets in an 80%, 5%, and 15%
ratio, ensuring no overlap among the subsets.

KIT-ML The KIT-ML [33] dataset is comprised of 3,911 motion sequences along with 6,278 textual
descriptions, averaging 9.5 words per description. This dataset is an amalgamation of selected subsets
from the KIT WholeBody Human Motion Database [27] and the CMU Graphics Lab Motion Capture
Database [1]. The motion sequences within KIT-ML have been downsampled to a rate of 12.5 fps,
ensuring a uniform and manageable rate for analysis and experimentation.

Evaluation metrics Our evaluation comprises two categories of metrics. Firstly, to assess the quality
of the generated motion, we adopt evaluation metrics consistent with previous methods. These include
the Frechet Inception Distance (FID), Multi-modal Distance (MM Dist), R-Precision (calculating
the Top-1/2/3 motion-to-text retrieval accuracy), and the Diversity metric. These metrics collectively
provide a robust indication of both the realism and diversity of the generated motion.

Secondly, we introduce new metrics tailored to our proposed motion generation setting. Specifically,
these metrics aim to measure the consistency between the provided pose conditions and the generated
motion. For scenarios where the initial or final poses are given, the positioning of the corresponding
generated poses in the motion sequence is critical. Hence, we propose the use of Reconstruction
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Table 1: Evaluation of the effectiveness of diverse controls compared with state-of-the-art method
MDM on HumanML3D and KIT-ML test set. Bold indicates the best result.

Method Dataset Initial token Last token Key tokens
Recon ↓ Vel ↓ Recon ↓ Vel ↓ Dist ↓

MDM [43] HumanML3D 31.04 1.370 23.45 1.577 2197
MotionGPT-13B (ours) 13.78 0.549 6.831 0.397 55.59

MDM [43] KIT-ML 28.37 0.639 28.67 0.861 905.4
MotionGPT-13B (ours) 25.17 0.422 35.43 0.673 77.58

Table 2: Comparisons of text-to-motion generation with the state-of-the-art methods on Hu-
manML3D and KIT-ML test set. MotionGPT-13B achieves comparable performance on all metrics.
Bold and Underline indicate the best and the second best result.

Methods HumanML3D KIT-ML
FID ↓ MM Dist ↓ Diversity ↑ FID ↓ MM Dist ↓ Diversity ↑

Real motion 0.002 2.974 9.503 0.031 2.788 11.08

TEMOS [32] 3.734 3.703 8.973 3.717 3.417 10.84
TM2T [8] 1.501 3.467 8.589 1.501 3.467 8.589
T2M [7] 1.087 3.347 9.175 3.022 3.488 10.72
MotionDiffuse [50] 0.630 3.113 9.410 1.954 2.958 11.10
MDM [43] 0.544 5.566 9.559 0.497 9.191 10.85

MotionGPT-13B (Ours) 0.567 3.775 9.006 0.597 3.394 10.54

Loss (Recon) and Velocity Loss (Vel), both measured by L2 loss, to evaluate the quality of pose
reconstruction and its temporal continuity with neighboring poses. For scenarios where keyframe
poses are provided, the positions of the corresponding generated poses within the motion sequence
are unknown. Consequently, we calculate the Nearest Euclidean Distance for each key token relative
to the corresponding ground truth poses, and report the Average Distance (Dist). This approach
allows us to quantitatively measure the accuracy of our model in reproducing the provided keyframe
poses within the generated motion sequence.

4.2 Implement Details

Motion data pre-processing We follow the same data pre-processing method with [7]. Specifically,
raw 3D motion coordinate is first transformed to make people face the Z+ direction, and subse-
quently pre-processed into motion features. These features include foot contact, global rotations and
translations, local joint positions, velocities, and 6D rotations, having total dimensions of 263 for
HumanML3D and 251 for KIT-ML.

Training details In our experiments, we utilize a frozen 13B LLaMA [44] model as the foundational
LLM, which is subsequently fine-tuned using the LoRA technique. The model training process spans
37,500 epochs, starting with an initial learning rate of 3e-3. We set the batch size to 256, partitioned
into micro-batches of 4 to accommodate memory constraints. We employ the AdamW optimizer [24]
with a weight decay parameter of 0.01 to guide the optimization process. The training duration is
approximately 4 hours for the HumanML3D dataset [7] and 3 hours for the KIT-ML dataset [33]
when conducted on a single A100 GPU. These timelines highlight the efficiency of our training
process compared to traditional methods. As for the pre-training of motion VQ-VAE [45], we follow
the network structure and training strategy of [49], which is applied consistently across both datasets.

4.3 Comparisons for Motion Generation with Multiple Control Conditions

In this section, we conduct four different generation experiments with 1) text as the condition, 2)
text and initial pose as the condition, 3) text and last pose as the condition, and 4) text and random
keyframe pose as the condition. For both 2) and 3), we use 4 frame poses as the input pose condition;
While for 4), we random sample 12 to 20 frame poses as the pose condition.
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Figure 3: Generated motion by MotionGPT with multiple control conditions on HumanML3D.

Table 3: Motion generation quality on HumanML3D and KIT-ML test set for diverse control
conditions.

Methods HumanML3D KIT-ML
FID ↓ MM Dist ↓ Diversity ↑ FID ↓ MM Dist ↓ Diversity ↑

Text-only 0.567 3.775 9.006 0.597 3.394 10.54
Text + Initial poses 0.520 3.844 9.588 0.664 3.445 10.39
Text + Last poses 0.591 3.718 9.251 0.856 3.336 10.58
Text + Random poses 0.367 3.598 9.176 0.671 3.411 10.76

Consistency with pose control conditions We evaluate the consistency between given pose controls
and generated motion. The results are shown in Tab. 1. Our model, MotionGPT-13B, outperforms
the state-of-the-art method, MDM [43], ensuring a higher degree of congruence between provided
controls and generated motions across both HumanML3D [7] and KIT-ML [33] datasets. This
superior performance is evidenced by the significantly reduced reconstruction and velocity errors for
both initial and last tokens. Furthermore, MotionGPT-13B delivers a much lower distance error for
key tokens, further illustrating its exceptional capability in accurately incorporating pose controls
throughout the motion sequence. These observations highlight the efficacy of MotionGPT-13B in
translating control conditions into corresponding motion sequences accurately, demonstrating its vast
potential for applications in various scenarios.

Quality of generated motion The quantitative results of motion quality are depicted in Tab. 2 and
Tab. 3. As illustrated in Tab. 2, our proposed model, MotionGPT, exhibits a performance that is
competitive with state-of-the-art methods for text-to-motion generation. Specifically, MotionGPT
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a standing man leans down to a kneeled
position with his left knee contacting
the ground and his right leg planted
foot down. the man then stands up.

the figure steps forward then turns
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to walk in that direction
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while bending his legs

staring with arms out in a t, a person brings
their hands together for a clap and proceeds

to take two steps to sit down to relax

Figure 4: Qualitative comparison of the state-of-the-art motion generation method MDM with text-
only conditions on HumanML3D.

consistently achieves comparable results across all metrics on both HumanML3D [7] and KIT-
ML [33] datasets. In addition to text conditions, MotionGPT can also incorporate human poses
as a secondary control modality and the motion quality results are demonstrated in Tab. 3. The
adoption of additional control conditions, such as initial, last, or key tokens, does not compromise
the quality of the generated motions. In some instances, such as when provided with initial or key
tokens, MotionGPT even outperforms its text-only counterpart from 0.567 to 0.520 or 0.367 under
FID metric on HumanML3D, demonstrating its robustness and flexibility in handling diverse control
modalities. Nevertheless, a slight decrease in performance is observed when the model is given the
final pose as input, which is in line with our expectations, as generating motions with a predetermined
end pose presents an inherently greater challenge. Despite this, MotionGPT’s performance remains
commendable, further affirming its capability to generate high-quality, diverse motions under various
control conditions.

We present visualization results in Fig. 3 and Fig. 4. As the Fig. 3 shown, the motions generated by
our model exhibit a notable alignment with the provided poses, while also displaying a consistent
adherence to the textual descriptions. For the text-to-motion generation task, we compare our model,
MotionGPT, with the MDM, as depicted in Fig. 4. Our model demonstrates superior text-consistency
and text-completeness compared to MDM [43]. The motions generated by the MDM model often
tend to align with only the initial segment of the description, ignoring the latter half. In contrast, our
approach exhibits a more comprehensive understanding of the motion descriptions by leveraging the
powerful capabilities of LLMs, thus generating more complete and nuanced motion sequences.

4.4 Ablation Study

Additionally, extensive ablation studies are conducted on HumanML3D [7] validation set. Throughout
the experiments, the MotionGPT-7B model is utilized unless otherwise specified.

Capability of pre-trained LLM Pre-trained LLMs can provide robust priors about human motion
from texts. In this context, we experiment with base models pre-trained to varying degrees, including
LLaMA-7B, LLaMA-13B, and LLaMA without pre-training. For the un-pretrained LLaMA, we adopt
the same network structure as LLaMA-7B without loading the pre-trained weights. The randomly
initialized LLaMA is tuned by LoRA as well, fixing weights during training. As demonstrated in
Tab. 4, our results show a strong correlation between the level of pre-training in LLMs and the
performance of our model in the text-to-motion generation task. This highlights the significant
influence of motion prior extracted from LLM. Note that the training parameters of LoRA are same.

Hyper-parameters of LoRA During training, all the trainable parameters are sourced from
LoRA [13], which has two hyper-parameters: r and α. The rank of LoRA parameters is repre-
sented by r, with smaller values indicating a fewer number of parameters. α controls the scale of
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Table 4: Evaluation of text-to-motion generation using different pre-trained LLaMA on Hu-
manML3D validation set. Bold indicates the best result.

Pre-trained Model FID ↓ MM Dist ↓ R-Precision ↑ Diversity ↑Top-1 Top-2 Top-3

LLaMA w/o pre-trained 26.01 8.445 0.032 0.067 0.106 9.745
LLaMA-7B 0.590 3.796 0.376 0.553 0.657 9.048
LLaMA-13B 0.542 3.584 0.411 0.594 0.696 9.311

Table 5: Evaluation of text-to-motion generation for different LoRA parameters on HumanML3D
validation set using MotionGPT-7B. Bold and Underline indicate the best and the second best result.

r α FID ↓ MM Dist ↓ R-Precision ↑ Diversity ↑Top-1 Top-2 Top-3

8 16 0.837 4.142 0.315 0.491 0.600 8.847
16 16 0.977 4.139 0.324 0.492 0.615 9.745
32 16 0.576 3.982 0.330 0.507 0.618 8.801

8 2 1.148 4.103 0.323 0.505 0.610 9.056
16 4 0.815 3.969 0.340 0.515 0.622 8.995
32 8 0.819 3.850 0.372 0.555 0.652 9.420

64 8 1.869 4.614 0.267 0.419 0.529 8.438
64 32 0.773 4.181 0.321 0.482 0.602 8.824
64 16 0.590 3.796 0.376 0.553 0.657 9.048

Table 6: Comparisons between separate training for each task and joint training for multiple
tasks on HumanML3D validation set using MotionGPT-7B. Red and Blue indicate the improvement
and decrement in the metric, respectively. Joint training can achieve better performance for all tasks.

Task Training FID ↓ MM Dist ↓ R-Precision ↑ Diversity ↑Strategy Top-1 Top-2 Top-3

Text

Separate

0.670 4.267 0.299 0.469 0.577 9.745
+ Initial token 0.756 3.802 0.374 0.556 0.658 9.148
+ Last token 1.409 4.516 0.290 0.446 0.564 8.771
+ Key tokens 0.702 3.690 0.370 0.546 0.668 8.974

Text

Joint

0.590−.180 3.796−.471 0.376+.077 0.553+.084 0.657+.080 9.048−.697

+ Initial token 0.493−.263 3.750−.052 0.384+.010 0.564+.008 0.666+.008 9.378+.230

+ Last token 0.646−.763 3.675−.841 0.393+.103 0.577+.131 0.681+.117 9.030+.259

+ Key tokens 0.390−.663 3.492−.198 0.416+.046 0.597+.051 0.713+.045 9.621+.647

the outputs derived from the dense layer of LoRA. As illustrated in Tab. 5, we observe that the
performance of our model improves across almost all metrics when we increase the value of r,
keeping α constant. By maintaining the scale factor α

r , which is comparable to the learning rate, we
demonstrate that an increase in r leads to superior performance. Additionally, when α is modified
while r is kept stable, we find that the optimal performance is achieved when α is set to 16.

Comparison with separate training To further evaluate the effectiveness of our unified motion
generation approach, we conduct separate training for each task on the HumanML3D dataset [7].
The aim is to investigate if multi-task learning could improve the performance of individual control
conditions. The comparison results are depicted in Table 6. We find that joint training across all
tasks yields significant improvements in all metrics. This effect is especially pronounced when text
and last poses are used as conditions. These findings underscore the utility of our unified motion
generation approach. It appears that the model’s ability to generate motions under a specific control
type is boosted by the knowledge derived from other related control conditions.

5 Conclusion and Limitations

Conclusion This study introduces MotionGPT, a novel method capable of generating human motion
using multimodal control signals, such as text and single-frame poses. The approach effectively
discretizes pose conditions and creates a unified set of instructions by combining codes from both
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textual and pose prompts. With MotionGPT, we envision a path toward more practical and versatile
motion generation systems, offering a fresh perspective in the field.

Limitations Although current MotionGPT may support any control modalities beyond current human
poses and text, this paper only validates the effectiveness on text and human poses. Validating our
MotionGPT on a broader spectrum of possible modalities, such as music pieces, would be highly
beneficial to more applications in the real world.
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Supplementary Material

In this supplementary material, we provide additional experiments (Sec. A) and more visualization
results (Sec. B).

A Additional Experiments

To further demonstrate the effectiveness of our model, we conducted several additional experiments
on the HumanML3D validation set for text-to-motion generation, employing the MotionGPT-7B
model architecture.

A.1 Evaluation of batch size

We conducted an evaluation of the performance of the MotionGPT-7B model trained with different
batch sizes, and the results are presented in Table 7. It can be observed that the performances for
batch sizes of 128 and 512 are comparable, while the batch size of 256 significantly outperforms the
others across nearly all metrics.

Table 7: Evaluation of text-to-motion generation for MotionGPT-7B training with different batch
sizes on HumanML3D validation set.

Batch Size FID ↓ MM Dist ↓ R-Precision ↑ Diversity ↑Top-1 Top-2 Top-3

128 0.752 4.063 0.314 0.491 0.612 9.100
256 0.590 3.796 0.376 0.553 0.657 9.048
512 0.684 4.010 0.311 0.495 0.611 8.947

A.2 Evaluation of prompt design

LLMs are known to be sensitive to prompts, emphasizing the criticality of carefully designing prompts
to optimize model performance. In this section, we delve into the impact of employing two alternative
prompts and assess their respective performances. Denoting the prompt used in our model as V0, we
also introduce two additional prompts, namely V1 and V2, as follows:

% Prompts V1

Human motion can be represented by token indices by VQ-VAE. Below is an instruction that
describes human motion generation condition types, paired with an input that provides specific
conditions. Write a sequence of tokens matching with given conditions.

Instruction (I) : {Task Prompts: "Motion description( and the init/last/key pose tokens)."}
{Control Conditions: Text control condition X ( <Motion Token> Pose control conditions P
</Motion Token>) }

% Prompts V2

Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

Instruction (I) : {Task Prompts: "Generate the token sequence of the given human motion
description( under the premise of the given init/last/key pose tokens)."} {Control Conditions:
Text control condition X ( <Motion Token> Pose control conditions P </Motion Token>) }

For the prompts V1, we incorporated specific human motion generation details into the overall
descriptions, while simplifying the task prompts to only include condition types. On the other hand,
for the prompts V2, we modified the expression of the task prompts. The comparison results between
these prompts are presented in Tab. 8, highlighting the efficiency and effectiveness of our proposed
prompt designs. These findings underscore the significance of well-designed prompts in enhancing
the performance of our model.
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Table 8: Evaluation of text-to-motion generation for MotionGPT-7B applying different prompts on
HumanML3D validation set.

Prompts FID ↓ MM Dist ↓ R-Precision ↑ Diversity ↑Top-1 Top-2 Top-3

V1 8.506 5.490 0.200 0.331 0.447 7.566
V2 3.018 4.858 0.249 0.402 0.508 8.237

V0 (Ours) 0.590 3.796 0.376 0.553 0.657 9.048

B Qualitative Results

In this section, we showcase additional qualitative results generated by MotionGPT-13B for all four
different control conditions. These results are presented in Figure 5, Figure 6, Figure 7, and Figure 8,
respectively. The motion descriptions are sourced from the HumanML3D test set, and the pose control
conditions are highlighted in blue. These visual examples offer further insights into the capabilities
and performance of our model in generating motions based on different control conditions.
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a person walks forward,
turns and then sits on a chair

a person squats, gets back up then
makes a t-shape with its body

walking forward and
then bending down

this person stand stills and uses his
left arm as if to clean a counter

a hunched individual slowly wobbles
forward in a drunken manner

a person puts his hands together in
front of him then rests them on his side

a person is moving their
arms to warm up

the person is walking on the treadmill a person is bent forward with
arms dangling in front of them

a person gets down and
crawls around the floor

a person stirs something with their left hand a person is walking in an
unbalanced and wobbly way

stick figure bends over and picks something
up then starts walking forward

a person is walking very
slowly in forward direction

a person walks
around and stops

the person is trying to
talk with his hands

the person is making an arm gesture
putting his arms up into the aira person slowly walks backwards

Figure 5: More text-to-motion samples generated by MotionGPT-13B using texts from the Hu-
manML3D test set.
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Figure 6: More (text+initial token)-to-motion samples generated by MotionGPT-13B using texts
from the HumanML3D test set. The initial pose condition is highlighted in blue.
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a person slowly walks backwards someone performs two jumping
jacks from a standing position

a person repeatedly holds both hands
above their head and then swings them
forward and down rapidly with force

the man is moving both arms

a person jumps
forward once

figure waves hand in
front of themselves

a person seems to be
warming up both arms

a person stretches their shoulders
by moving their bent arms

forward and backward

a person slowly walked backward
while raising the hands up

a man confidently walks down
a ramp with a measured pace walking forward and then back someone slowly and dramatically

walks forward in a straight line

a person walks forward and stops

the person is shivering and then rubbing
their hands together to stay warm

walking forward and
then bending down

a person jogs straight forwarda person turns right while walking then stops

a person with their arms bent
kicks to side with their left foot

Figure 7: More (text+last token)-to-motion samples generated by MotionGPT-13B using texts from
the HumanML3D test set. The last pose condition is highlighted in blue.
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the person is doing arm
exercises like a windmill

the person is making a gesture
with his right hand

discovery of something  unknown
near the chest area

he walked to the left while keeping
his center of gravity very low

a person does multiple
jumping jacks

a person steps forward then turns
around to walk multiple times before

stopping with their back turned

a person is doing a salsa dance
moving their legs and arms

a person is dancing with her arms
and lifting her left leg up at the end

a person bends their
back to stretch

the man dances around waving
his arms and kicking his legs

a person walks forward, bends down to pick
something up off the ground, and walks right

to place the object down in a different location

a walking person suddenly gets
staggered to their left, then recovers

the sim walks down the
plane in a wobbly fashion

a person leans on the floor and get up after

standing on one leg
and swinging it

a person throws something
lackadaisically with their right arm

the person was limping forward then turned
around and went the other direction

the man walked forward, forming
a forty-five degree angle

Figure 8: More (text+key tokens)-to-motion samples generated by MotionGPT-13B using texts from
the HumanML3D test set. The key pose conditions are highlighted in blue.
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